SILTING OBJECTS, t-STRUCTURES AND DERIVED EQUIVALENCES

نویسندگان

  • CHRYSOSTOMOS PSAROUDAKIS
  • Jorge Vitória
چکیده

This note is an extended abstract of my talk given in the conference: “Maurice Auslander Distinguished Lectures and International Conference”, April 29 May 4, 2015. It is based on [6] which is joint work with Jorge Vitória.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auslander-Buchweitz Context and Co-t-structures

We show that the relative Auslander-Buchweitz context on a triangulated category T coincides with the notion of co-t-structure on certain triangulated subcategory of T (see Theorem 3.8). In the Krull-Schmidt case, we stablish a bijective correspondence between cot-structures and cosuspended, precovering subcategories (see Theorem 3.11). We also give a characterization of bounded co-t-structures...

متن کامل

An Algebraic Model for Rational S-equivariant Stable Homotopy Theory

Greenlees defined an abelian category A whose derived category is equivalent to the rational S1-equivariant stable homotopy category whose objects represent rational S1equivariant cohomology theories. We show that in fact the model category of differential graded objects in A models the whole rational S1-equivariant stable homotopy theory. That is, we show that there is a Quillen equivalence be...

متن کامل

Derived Categories and Tilting

We review the basic definitions of derived categories and derived functors. We illustrate them on simple but non trivial examples. Then we explain Happel’s theorem which states that each tilting triple yields an equivalence between derived categories. We establish its link with Rickard’s theorem which characterizes derived equivalent algebras. We then examine invariants under derived equivalenc...

متن کامل

Equivalences of Higher Derived Brackets

This note elaborates on Th. Voronov’s construction [V1, V2] of L∞-structures via higher derived brackets with a Maurer–Cartan element. It is shown that gauge equivalent Maurer–Cartan elements induce L∞-isomorphic structures. Applications in symplectic, Poisson and Dirac geometry are discussed.

متن کامل

Equivalences between cluster categories

Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015